

 Navigation

 	
 index

 	
 next |

 	plone.act 1.0a1 documentation

Warning

plone.act is deprecated.

Please, use http://pypi.python.org/pypi/plone.app.robotframework instead.

Plone ACT – functional tests for Plone made easy

plone.act and its documentation gives you everything to get started in
writing and executing functional Selenium tests (including acceptance tests)
for your Plone add-on.

plone.act performs functional testing by using two testing frameworks:
Robot Framework [http://code.google.com/p/robotframework/] and
Selenium [http://seleniumhq.org/].

Robot Framework is a generic test automation framework for acceptance testing
and acceptance test-driven development (ATDD), even for behavior driven
development (BDD). It has easy-to-use plain text test syntax and utilizes the
keyword-driven testing approach. Selenium is a web browser automation framework
that exercises the browser as if the user was interacting with the browser.

Start here

	Write a robot test for a new Plone add-on

	Write a robot test for an existing Plone add-on

	Learn more robot ...

	... also by reading some good examples [https://github.com/plone/Products.CMFPlone/blob/master/Products/CMFPlone/tests/robot/robot_livesearch.txt]

	Debug robot tests

Print these

	Robot Framework built-in library documentation

	http://robotframework.googlecode.com/hg/doc/libraries/BuiltIn.html?r=2.7.6

	Robot Framework Selenium2Library documentation

	http://rtomac.github.com/robotframework-selenium2library/doc/Selenium2Library.html

Read more

	How to write good Robot Framework test cases

	http://code.google.com/p/robotframework/wiki/HowToWriteGoodTestCases

Become master

	Speed up your test writing with ACT-server

	Speed up your BDD Given-clauses with a remote library

 Copyright 2012, Plone Foundation.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	plone.act 1.0a1 documentation

Write a robot test for a new Plone add-on

This is a minimal tutorial for getting started with writing functional Selenium
tests for a new Plone add-on with Robot Framework.

Install Templer

At first, we should have an add-on to test with. For creating a new add-on, we
use Templer [http://templer-manual.readthedocs.org/en/latest/].

	Create a directory for a Templer-buildout and move there:

$ mkdir templer-buildout
$ cd templer-buildout

	Create a file templer-buildout/buildout.cfg for Templer-installation
with:

[buildout]
parts = templer

[templer]
recipe = zc.recipe.egg
eggs =
 templer.core
 templer.plone

	Download a bootstrap for running the buildout:

$ curl -O http://python-distribute.org/bootstrap.py

	Bootstrap and run the buildout:

$ python bootstrap.py --distribute
$ bin/buildout
Installing templer.
Generated script '/.../templer-buildout/bin/templer'.

	Return back to the parent directory:

$ cd ..

Create a new product

Once we have Templer installed, we create a Plone add-on product by entering
templer-buildout/bin/templer plone_basic and answering to the upcoming
questions.

We must make sure to answer True for the question:

Robot Tests (Should the default robot test be included) [False]: True

Once we have answered for all the questions, our add-on template is ready:

$ templer-buildout/bin/templer plone_basic

plone_basic: A package for Plone add-ons

This template creates a package for a basic Plone add-on project with
a single namespace (like Products.PloneFormGen).

To create a Plone project with a name like 'collective.geo.bundle'
(2 dots, a 'nested namespace'), use the 'plone_nested' template.

If you are trying to create a Plone *site* then the best place to
start is with one of the Plone installers. If you want to build
your own Plone buildout, use one of the plone'N'_buildout templates

This template expects a project name with 1 dot in it (a 'basic
namespace', like 'foo.bar').

Enter project name (or q to quit): my.product

If at any point, you need additional help for a question, you can enter
'?' and press RETURN.

Expert Mode? (What question mode would you like? (easy/expert/all)?) ['easy']:
Version (Version number for project) ['1.0']:
Description (One-line description of the project) ['']:
Register Profile (Should this package register a GS Profile) [False]:
Robot Tests (Should the default robot test be included) [False]: True
Creating directory ./my.product
Replace 1019 bytes with 1378 bytes (2/43 lines changed; 8 lines added)
Replace 42 bytes with 119 bytes (1/1 lines changed; 4 lines added)

Bootstrap and run buildout

Before we continue, now is a good time to run bootstrap and buildout to
get the development environment ready:

$ python bootstrap.py --distribute
$ bin/buildout

Run the default tests

Templer does create a couple of example tests for us – one of them being
a robot test.

We can list the available tests with:

$ bin/test --list-tests
Listing my.product.testing.MyproductLayer:Functional tests:
 Plone site (robot_test.txt) #start
Listing my.product.testing.MyproductLayer:Integration tests:
 test_success (my.product.tests.test_example.TestExample)

And run the example robot test with:

$ bin/test -t robot_
Running my.product.testing.MyproductLayer:Functional tests:
 Set up plone.testing.zca.LayerCleanup in 0.000 seconds.
 Set up plone.testing.z2.Startup in 0.237 seconds.
 Set up plone.app.testing.layers.PloneFixture in 8.093 seconds.
 Set up my.product.testing.MyproductLayer in 0.178 seconds.
 Set up plone.testing.z2.ZServer in 0.503 seconds.
 Set up my.product.testing.MyproductLayer:Functional in 0.000 seconds.
 Running:

 Ran 1 tests with 0 failures and 0 errors in 2.588 seconds.
Tearing down left over layers:
 Tear down my.product.testing.MyproductLayer:Functional in 0.000 seconds.
 Tear down plone.testing.z2.ZServer in 5.251 seconds.
 Tear down my.product.testing.MyproductLayer in 0.004 seconds.
 Tear down plone.app.testing.layers.PloneFixture in 0.087 seconds.
 Tear down plone.testing.z2.Startup in 0.006 seconds.
 Tear down plone.testing.zca.LayerCleanup in 0.005 seconds.

About functional test fixture

Functional Selenium tests require a fully functional Plone-environment.

Luckily, with
plone.app.testing [http://pypi.python.org/pypi/plone.app.testing/]
we can easily define a custom test fixture with Plone and our own add-on
installed.

With Templer, both the base fixture and the functional test fixtures have
already been defined in my.product/src/my/product/testing.py. The latter
with:

from plone.app.testing import FunctionalTesting

...

MY_PRODUCT_FUNCTIONAL_TESTING = FunctionalTesting(
 bases=(MY_PRODUCT_FIXTURE, z2.ZSERVER_FIXTURE),
 name="MyproductLayer:Functional"
)

Create a new robot test suite

Robot tests are written as text files, which are called test suites.

It’s good practice, with Plone, to prefix all robot test suite files with
robot_. This makes it easier to both exclude the robot tests (which are
usually very time consuming) from test runs or run only the robot tests.

Write an another robot tests suite
my.product/src/my/product/tests/robot_hello.txt:

*** Settings ***

Library Selenium2Library timeout=10 implicit_wait=0.5

Suite Setup Start browser
Suite Teardown Close All Browsers

*** Variables ***

${BROWSER} = Firefox

*** Test Cases ***

Hello World
 [Tags] hello
 Go to http://localhost:55001/plone/hello-world
 Page should contain Hello World!

*** Keywords ***

Start browser
 Open browser http://localhost:55001/plone/ browser=${BROWSER}

Note

Defining browser for Open browser keyword as a variable makes it easy to
run the test later with different browser.

Register the suite for zope.testrunner

To be able to run Robot Framework test suite with
zope.testrunner [http://pypi.python.org/pypi/zope.testrunner/]
and on top of our add-ons functional test fixture, we need to

	wrap the test suite into properly named Python unittest test suite

	assign our functional test layer for all the test cases.

We do this all by simply adding our new robot test suite into
my.product/src/my/product/tests/test_robot.py:

from my.product.testing import MY_PRODUCT_FUNCTIONAL_TESTING
from plone.testing import layered
import robotsuite
import unittest

def test_suite():
 suite = unittest.TestSuite()
 suite.addTests([
 layered(robotsuite.RobotTestSuite("robot_test.txt"),
 layer=MY_PRODUCT_FUNCTIONAL_TESTING),
 layered(robotsuite.RobotTestSuite("robot_hello_world.txt"),
 layer=MY_PRODUCT_FUNCTIONAL_TESTING)
])
 return suite

Note that test_-prefix in the filename of test_robot.py is required for
zope.testunner to find the test suite.

List and filter tests

Run bin/test (zope.testrunner) with --list-tests-argument to
see that our test is registered correctly:

$ bin/test --list-tests
Listing my.product.testing.MyproductLayer:Functional tests:
 Plone site (robot_test.txt) #start
 Hello_World (robot_hello_world.txt) #hello
Listing my.product.testing.MyproductLayer:Integration tests:
 test_success (my.product.tests.test_example.TestExample)

Experiment with -t-argument to filter testrunner to find only our
robot test:

$ bin/test -t robot_ --list-tests
Listing my.product.testing.MyproductLayer:Functional tests:
 Plone site (robot_test.txt) #start
 Hello_World (robot_hello_world.txt) #hello

or everything else:

$ bin/test -t \!robot_ --list-tests
Listing my.product.testing.MyproductLayer:Integration tests:
 test_success (my.product.tests.test_example.TestExample)

We can also filter robot tests with tags:

$ bin/test -t \#hello --list-tests
Listing my.product.testing.MyproductLayer:Functional tests:
 Hello_World (robot_hello_world.txt) #hello

Run (failing) test

After the test has been written and registered, it can be run normally
with bin/test.

The run will fail, because the test describes an unimplemented feature:

$ bin/test -t \#hello

Running my.product.testing.MyproductLayer:Functional tests:
 Set up plone.testing.zca.LayerCleanup in 0.000 seconds.
 Set up plone.testing.z2.Startup in 0.217 seconds.
 Set up plone.app.testing.layers.PloneFixture in 7.643 seconds.
 Set up my.product.testing.MyproductLayer in 0.026 seconds.
 Set up plone.testing.z2.ZServer in 0.503 seconds.
 Set up my.product.testing.MyproductLayer:Functional in 0.000 seconds.
 Running:
 1/1 (100.0%)
==
Robot Hello World
==
Hello World | FAIL |
Page should have contained text 'Hello World!' but did not
--
Robot Hello World | FAIL |
1 critical test, 0 passed, 1 failed
1 test total, 0 passed, 1 failed
==
Output: /.../my.product/parts/test/robot_hello_world/Hello_World/output.xml
Log: /.../my.product/parts/test/robot_hello_world/Hello_World/log.html
Report: /.../my.product/parts/test/robot_hello_world/Hello_World/report.html

Failure in test Hello World (robot_hello_world.txt) #hello
Traceback (most recent call last):
 File "/.../unittest2-0.5.1-py2.7.egg/unittest2/case.py", line 340, in run
 testMethod()
 File "/.../eggs/robotsuite-1.0.2-py2.7.egg/robotsuite/__init__.py", line 317, in runTest
 assert last_status == 'PASS', last_message
AssertionError: Page should have contained text 'Hello World!' but did not

 Ran 1 tests with 1 failures and 0 errors in 3.632 seconds.
Tearing down left over layers:
 Tear down my.product.testing.MyproductLayer:Functional in 0.000 seconds.
 Tear down plone.testing.z2.ZServer in 5.282 seconds.
 Tear down my.product.testing.MyproductLayer in 0.003 seconds.
 Tear down plone.app.testing.layers.PloneFixture in 0.084 seconds.
 Tear down plone.testing.z2.Startup in 0.006 seconds.
 Tear down plone.testing.zca.LayerCleanup in 0.004 seconds.

Create an example view

Create view described in the test by registering a template into
my.product/src/my/product/configure.zcml:

<configure
 xmlns="http://namespaces.zope.org/zope"
 xmlns:five="http://namespaces.zope.org/five"
 xmlns:browser="http://namespaces.zope.org/browser"
 xmlns:i18n="http://namespaces.zope.org/i18n"
 xmlns:genericsetup="http://namespaces.zope.org/genericsetup"
 i18n_domain="my.product">

 <five:registerPackage package="." initialize=".initialize" />

 <browser:page
 name="hello-world"
 for="Products.CMFCore.interfaces.ISiteRoot"
 template="hello_world.pt"
 permission="zope2.View"
 />

 <!-- -*- extra stuff goes here -*- -->

</configure>

And writing the template into my.product/src/my/product/hello_world.pt:

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
 xmlns:tal="http://xml.zope.org/namespaces/tal"
 xmlns:metal="http://xml.zope.org/namespaces/metal"
 xmlns:i18n="http://xml.zope.org/namespaces/i18n"
 lang="en"
 metal:use-macro="context/main_template/macros/master"
 i18n:domain="plone">
<body>

<metal:content-core fill-slot="content-core">
 <metal:content-core define-macro="content-core">
 <p>Hello World!</p>
 </metal:content-core>
</metal:content-core>

</body>
</html>

Run (passing) test

Re-run the test to see it passing:

$ bin/test -t \#hello
Running my.product.testing.MyproductLayer:Functional tests:
 Set up plone.testing.zca.LayerCleanup in 0.000 seconds.
 Set up plone.testing.z2.Startup in 0.220 seconds.
 Set up plone.app.testing.layers.PloneFixture in 7.810 seconds.
 Set up my.product.testing.MyproductLayer in 0.027 seconds.
 Set up plone.testing.z2.ZServer in 0.503 seconds.
 Set up my.product.testing.MyproductLayer:Functional in 0.000 seconds.
 Running:

 Ran 1 tests with 0 failures and 0 errors in 2.604 seconds.
Tearing down left over layers:
 Tear down my.product.testing.MyproductLayer:Functional in 0.000 seconds.
 Tear down plone.testing.z2.ZServer in 5.253 seconds.
 Tear down my.product.testing.MyproductLayer in 0.004 seconds.
 Tear down plone.app.testing.layers.PloneFixture in 0.085 seconds.
 Tear down plone.testing.z2.Startup in 0.006 seconds.
 Tear down plone.testing.zca.LayerCleanup in 0.004 seconds.

Test reports

Robot Framework generates high quality test reports with screenshots of
failing tests as:

	my.product/parts/tests/robot_report.html

	Overview of the test results.

	my.product/parts/tests/robot_log.html:

	Detailed log for every test with screenshots of failing tests.

 Copyright 2012, Plone Foundation.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	plone.act 1.0a1 documentation

Write a robot test for an existing Plone add-on

This is a tutorial for getting started with writing functional Selenium tests
for an existing Plone add-on with Robot Framework.

Let’s assumpt that we have an add-on my.product.

Update requirements

At first, we need to fix our product to require all the necessary dependencies
for running Robot Framework tests.

To fix our dependencies, we update my.product/setup.py with:

extras_require={'test': ['plone.app.testing[robot]]},

Note

When testing with Plone version less than 4.3, we must pin
the version of plone.app.testing into buildout.cfg.

Update my.product/buildout.cfg with:

[buildout]
extends =
 ...
 versions.cfg

And create my.product/versions.cfg with:

[versions]
plone.app.versions = 4.2.2

Bootstrap and run buildout

Before we continue, now is a good time to run bootstrap and buildout to get the
development environment ready:

$ python bootstrap.py --distribute
$ bin/buildout

Define functional test fixture

Functional Selenium tests require a fully functional Plone-environment.

Luckily, with
plone.app.testing [http://pypi.python.org/pypi/plone.app.testing/]
we can easily define a custom test fixture with Plone and our own add-on
installed.

After the base fixture has been created (by following
plone.app.testing [http://pypi.python.org/pypi/plone.app.testing/]
documentation) we only need to define a functional testing fixture, which adds
a fully functional ZServer to serve a Plone sandbox with our add-on.

Update my.product/src/my/product/testing.py with:

from plone.app.testing import FunctionalTesting

MY_PRODUCT_FUNCTIONAL_TESTING = FunctionalTesting(
 bases=(MY_PRODUCT_FIXTURE, z2.ZSERVER_FIXTURE),
 name="MyproductLayer:Functional"
)

Create a robot test suite

Robot tests are written as text files, which are called test suites.

It’s good practice, with Plone, to prefix all robot test suite files with
robot_. This makes it easier to both exclude the robot tests (which are
usually very time consuming) from test runs or run only the robot tests.

Write a simple robot tests suite
my.product/src/my/product/tests/robot_hello.txt:

*** Settings ***

Library Selenium2Library timeout=10 implicit_wait=0.5

Suite Setup Start browser
Suite Teardown Close All Browsers

*** Variables ***

${BROWSER} = Firefox

*** Test Cases ***

Hello World
 [Tags] hello
 Go to http://localhost:55001/plone/hello-world
 Page should contain Hello World!

*** Keywords ***

Start browser
 Open browser http://localhost:55001/plone/ browser=${BROWSER}

Note

Defining browser for Open browser keyword as a variable makes it easy to
run the test later with different browser.

Register the suite for zope.testrunner

To be able to run Robot Framework test suite with
zope.testrunner [http://pypi.python.org/pypi/zope.testrunner/]
and on top of our add-ons functional test fixture, we need to

	wrap the test suite into properly named Python unittest test suite

	assign our functional test layer for all the test cases.

We do this all by simply writing
my.product/src/my/product/tests/test_robot.py:

from my.product.testing import MY_PRODUCT_FUNCTIONAL_TESTING
from plone.testing import layered
import robotsuite
import unittest

def test_suite():
 suite = unittest.TestSuite()
 suite.addTests([
 layered(robotsuite.RobotTestSuite("robot_hello_world.txt"),
 layer=MY_PRODUCT_FUNCTIONAL_TESTING)
])
 return suite

Note that test_-prefix in the filename of test_robot.py is required for
zope.testunner to find the test suite.

List and filter tests

Run bin/test (zope.testrunner) with --list-tests-argument to
see that our test is registered correctly:

$ bin/test --list-tests
Listing my.product.testing.MyproductLayer:Functional tests:
 Hello_World (robot_hello_world.txt) #hello
Listing my.product.testing.MyproductLayer:Integration tests:
 ...

Experiment with -t-argument to filter testrunner to find only our
robot test:

$ bin/test -t robot_ --list-tests
Listing my.product.testing.MyproductLayer:Functional tests:
 Hello_World (robot_hello_world.txt) #hello

or everything else:

$ bin/test -t \!robot_ --list-tests
Listing my.product.testing.MyproductLayer:Integration tests:
 ...

We can also filter robot tests with tags:

$ bin/test -t \#hello --list-tests
Listing my.product.testing.MyproductLayer:Functional tests:
 Hello_World (robot_hello_world.txt) #hello

Run (failing) test

After the test has been written and registered, it can be run normally
with bin/test.

The run will fail, because the test describes an unimplemented feature:

$ bin/test -t robot_

Running my.product.testing.MyproductLayer:Functional tests:
 Set up plone.testing.zca.LayerCleanup in 0.000 seconds.
 Set up plone.testing.z2.Startup in 0.217 seconds.
 Set up plone.app.testing.layers.PloneFixture in 7.643 seconds.
 Set up my.product.testing.MyproductLayer in 0.026 seconds.
 Set up plone.testing.z2.ZServer in 0.503 seconds.
 Set up my.product.testing.MyproductLayer:Functional in 0.000 seconds.
 Running:
 1/1 (100.0%)
==
Robot Hello World
==
Hello World | FAIL |
Page should have contained text 'Hello World!' but did not
--
Robot Hello World | FAIL |
1 critical test, 0 passed, 1 failed
1 test total, 0 passed, 1 failed
==
Output: /.../my.product/parts/test/robot_hello_world/Hello_World/output.xml
Log: /.../my.product/parts/test/robot_hello_world/Hello_World/log.html
Report: /.../my.product/parts/test/robot_hello_world/Hello_World/report.html

Failure in test Hello World (robot_hello_world.txt) #hello
Traceback (most recent call last):
 File "/.../unittest2-0.5.1-py2.7.egg/unittest2/case.py", line 340, in run
 testMethod()
 File "/.../eggs/robotsuite-1.0.2-py2.7.egg/robotsuite/__init__.py", line 317, in runTest
 assert last_status == 'PASS', last_message
AssertionError: Page should have contained text 'Hello World!' but did not

 Ran 1 tests with 1 failures and 0 errors in 3.632 seconds.
Tearing down left over layers:
 Tear down my.product.testing.MyproductLayer:Functional in 0.000 seconds.
 Tear down plone.testing.z2.ZServer in 5.282 seconds.
 Tear down my.product.testing.MyproductLayer in 0.003 seconds.
 Tear down plone.app.testing.layers.PloneFixture in 0.084 seconds.
 Tear down plone.testing.z2.Startup in 0.006 seconds.
 Tear down plone.testing.zca.LayerCleanup in 0.004 seconds.

Create an example view

Create view described in the test by registering a template into
my.product/src/my/product/configure.zcml:

<configure
 xmlns="http://namespaces.zope.org/zope"
 xmlns:five="http://namespaces.zope.org/five"
 xmlns:browser="http://namespaces.zope.org/browser"
 xmlns:i18n="http://namespaces.zope.org/i18n"
 xmlns:genericsetup="http://namespaces.zope.org/genericsetup"
 i18n_domain="my.product">

 ...

 <browser:page
 name="hello-world"
 for="Products.CMFCore.interfaces.ISiteRoot"
 template="hello_world.pt"
 permission="zope2.View"
 />

 ...

</configure>

And writing the template into my.product/src/my/product/hello_world.pt:

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
 xmlns:tal="http://xml.zope.org/namespaces/tal"
 xmlns:metal="http://xml.zope.org/namespaces/metal"
 xmlns:i18n="http://xml.zope.org/namespaces/i18n"
 lang="en"
 metal:use-macro="context/main_template/macros/master"
 i18n:domain="plone">
<body>

<metal:content-core fill-slot="content-core">
 <metal:content-core define-macro="content-core">
 <p>Hello World!</p>
 </metal:content-core>
</metal:content-core>

</body>
</html>

Run (passing) test

Re-run the test to see it passing:

$ bin/test -t robot_
Running my.product.testing.MyproductLayer:Functional tests:
 Set up plone.testing.zca.LayerCleanup in 0.000 seconds.
 Set up plone.testing.z2.Startup in 0.220 seconds.
 Set up plone.app.testing.layers.PloneFixture in 7.810 seconds.
 Set up my.product.testing.MyproductLayer in 0.027 seconds.
 Set up plone.testing.z2.ZServer in 0.503 seconds.
 Set up my.product.testing.MyproductLayer:Functional in 0.000 seconds.
 Running:

 Ran 1 tests with 0 failures and 0 errors in 2.604 seconds.
Tearing down left over layers:
 Tear down my.product.testing.MyproductLayer:Functional in 0.000 seconds.
 Tear down plone.testing.z2.ZServer in 5.253 seconds.
 Tear down my.product.testing.MyproductLayer in 0.004 seconds.
 Tear down plone.app.testing.layers.PloneFixture in 0.085 seconds.
 Tear down plone.testing.z2.Startup in 0.006 seconds.
 Tear down plone.testing.zca.LayerCleanup in 0.004 seconds.

Test reports

Robot Framework generates high quality test reports with screenshots of
failing tests as:

	my.product/parts/tests/robot_report.html

	Overview of the test results.

	my.product/parts/tests/robot_log.html:

	Detailed log for every test with screenshots of failing tests.

 Copyright 2012, Plone Foundation.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	plone.act 1.0a1 documentation

Learn more robot

Robot Framework is a generic and independent test automation framework with its
own expandable test syntax, test runner and test reporting tools. Yet, because
of its extensibility it’s very pleasant to work with.

Robot is all about running test clauses called keywords. Every test may
contain one more keywords, which are run in serial – usually until first of
them fails.

Keywords are defined in keywords libraries and as user keywords.
Keyword libraries may be, for example, Python libraries or XML-RPC-services.
User keywords are just composite lists of existing keywords – also user
keywords.

Because user keywords can also be composite of other user keywords,
they make it possible to write tests in domain-specific language.

Test suite

Robot tests are written in test suites, which are simply plain text files,
usually ending with .txt.

Note

Advanced robot users may learn from the
Robot Framework User Guide [http://code.google.com/p/robotframework/wiki/UserGuideRobot]
how to make hierarchical test suites.

Here’s an example test suite:

*** Settings ***

Library Selenium2Library timeout=10 implicit_wait=0.5
Resources keywords.txt

Suite Setup Start browser
Suite Teardown Close All Browsers

*** Variables ***

${BROWSER} = firefox

*** Test Cases ***

Hello World
 [Tags] hello
 Go to http://localhost:55001/plone/hello-world
 Page should contain Hello World!

*** Keywords ***

Start browser
 Open browser http://localhost:55001/plone/ browser=${BROWSER}

Each test suite may contain one to three different parts:

Settings

Import available keyword libraries or resources (resources are
plain text files like test suites, but without test cases) and
define possible setup and teardown keywords.

	Variables

	Define available robot variables with their default values.

	Test Cases

	Define runnable tests.

	Keywords

	Define new user keywords.

BDD-style tests

Robot support Gherkin-style tests by removing exact words given,
when, then and and from the beginning of keyword to find
a matching keyword.

For example, a clause:

Given I'm logged in as an admin

will match to a keyword:

I'm logged in as an admin

There’s a little bit more of BDD-style tests in
Robot Framework User Guide [http://robotframework.googlecode.com/hg/doc/userguide/RobotFrameworkUserGuide.html?r=2.7.6#behavior-driven-stylep].

 Copyright 2012, Plone Foundation.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	plone.act 1.0a1 documentation

Debugging robot tests

	Slow done Selenium (WebDriver) to make the tests easier to follow:

Set Selenium Speed 0.5 seconds

	Pause Selenium (WebDriver) completely to inspect your step:

Set Selenium Timeout 600 seconds
Wait For Condition true

	Write a python keyword into your Python keyword library
to drop the Zope server into debugger.

There’s one catch in debugging your code while running Robot Framework
tests. Robot eats your standard input and output, which prevents you to just
import pdb; pdb.set_trace().

Instead, you have to add a few more lines to reclaim your I/O at first, and
only then let your debugger in:

import sys
import pdb
for attr in ('stdin', 'stdout', 'stderr'):
 setattr(sys, attr, getattr(sys, '__%s__' % attr))
pdb.set_trace()

 Copyright 2012, Plone Foundation.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	plone.act 1.0a1 documentation

Speed up your test writing with ACT-server

plone.act comes with a special console script act_server, which starts
up a Plone site with a given
plone.app.testing [http://pypi.python.org/pypi/plone.app.testing/]
testing layer set up.

This will save time when writing new robot tests, because you can try out your
unfinished test over and over again without the usual time consuming
setup/teardown of testing layers between every test.

Install act_server with support for the developed product with a buildout
part:

[buildout]
...
parts += act_server
versions = versions

extensions = mr.developer
sources = sources
auto-checkout = plone.act

[sources]
plone.act = git git://github.com/plone/plone.act

[versions]
plone.app.testing = 4.2.2

[act_server]
recipe = zc.recipe.egg
eggs =
 plone.act
 my.product

After buildout, start act_server with:

$ bin/act_server my.product.testing.MY_PRODUCT_FUNCTIONAL_TESTING

And run tests with pybot and act_server test isolation support with:

$ bin/pybot --listener plone.act.server.ZODB src/my/product/tests/robot_tests.txt

 Copyright 2012, Plone Foundation.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 previous |

 	plone.act 1.0a1 documentation

Speed up your BDD Given-clauses via a remote library

BDD-style tests begin with one or more Given-clauses that should setup the
test environment for the actual tests-clauses (When and Then).

Because Given-clauses are not really part of the actual test, it is not
necessary to run them through Selenium (using Selenium2Library), but it would
be faster to write custon Python keywords for them.

plone.act includes an example, how to a robot
remote library [http://robotframework.googlecode.com/hg/doc/userguide/RobotFrameworkUserGuide.html?r=2.7.6#remote-library-interface],
which could be called to interact with the site without Selenium.

The base implementation is provided at:

https://github.com/plone/plone.act/blob/master/src/plone/act/remote.py

An example integration into testing layer is provided at:

https://github.com/plone/plone.act/blob/master/src/plone/act/testing.py#L43

An example test suite using the library is provided at:

https://github.com/plone/plone.act/blob/master/src/plone/act/tests/test_robot.py#L13

https://github.com/plone/plone.act/blob/master/src/plone/act/tests/robot_remote.txt

 Copyright 2012, Plone Foundation.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	plone.act 1.0a1 documentation

Index

 Copyright 2012, Plone Foundation.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 keywords.html

 Navigation

 		
 index

 		plone.act 1.0a1 documentation »

Selenium2Library Keywords

Note

TODO: The general idea of this document is to give a first introduction to
the Selenium2Library keywords. We do NOT want to re-document the existing
Selenium2Library documentation.

Selenium2Library is a web testing library for Robot Framework. It provides you
with several low-level keywords to access certain elements of a web page, to
conduct actions on a web page and to test if a page met certain acceptance critera.

First Example

TODO: We need a simple first example to explain the basic concepts. Here are
some ideas.

Test Google Search For Plone:

Test Google Search For Plone
 Go to www.google.com

 Input text id=gbqfq Plone
 Click Button id=gbqfbb

 Page should contain Plone CMS: Open Source Content Management
 Page should contain plone.org

Test Plone Search:

Test Plone Search
 Go to http://localhost:55001/plone/

 Input Text SearchableText batman
 Click Button Search

 Page should contain Search results
 Page should contain Welcome to Plone

Test Plone Live Search:

Test Plone Live Search
 Go to http://localhost:55001/plone/

 Input Text SearchableText Plone

 Page should contain Search results
 Page should contain Welcome to Plone

Test Plone Contact Form:

Test Plone Contact Form

 Click Link Contact
 Page should contain Contact
 ...

TODO: Explain the concepts of tests

Form:

		Precondition (Given)

		Action (When)

		Postcondition/Test (Then)

These parts should be separated by blank lines.

Preconditions

		Open Browser???

		Go to ...

See also

http://rtomac.github.com/robotframework-selenium2library/doc/Selenium2Library.html#Go%20To

Actions

Click on elements

		Click Button

		Click Element

		Click Image

		Click Link

See also

http://rtomac.github.com/robotframework-selenium2library/doc/Selenium2Library.html#Click%20Button

Fill out form

		Input Text

		Input Password

See also

http://rtomac.github.com/robotframework-selenium2library/doc/Selenium2Library.html#Input%20Text

Postconditions

		Page Should Contain <locator>

		Page Should Contain Button | Checkbox | Element | Image | Link | List | Radio Button | Textfield <locator>

		Page Should Not Contain <locator>

See also

http://rtomac.github.com/robotframework-selenium2library/doc/Selenium2Library.html#Page%20Should%20Contain

Locating elements

Locating element by id:

Click Element id=submit
Click Element name=submit
Click Element xpath=//div[@id='my_element']
Click Element dom=document.images[56]
Click Element link=Save
Click Element css=div.submit Matches by CSS selector
Click Element tag=div Matches by HTML tag name

See also

‘locating elements’ section http://rtomac.github.com/robotframework-selenium2library/doc/Selenium2Library.html

 © Copyright 2012, Plone Foundation.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

plone-keywords/edit-wizard-tabs.html

 Navigation

 		
 index

 		plone.act 1.0a1 documentation »

Edit Wizard Keywords

Wizard tabs

Open Wizard Tab:

Open wizard tabs with <title> title

[arguments] ${title}

 © Copyright 2012, Plone Foundation.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

_static/minus.png

_static/comment-bright.png

plone-keywords/history.html

 Navigation

 		
 index

 		plone.act 1.0a1 documentation »

History Keywords

Open history popup:

Open history popup for current context

 © Copyright 2012, Plone Foundation.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

plone-keywords/editbar.html

 Navigation

 		
 index

 		plone.act 1.0a1 documentation »

 © Copyright 2012, Plone Foundation.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

plone-keywords/browser.html

 Navigation

 		
 index

 		plone.act 1.0a1 documentation »

Plone Browser Keywords

Start browser and wake plone up:

Start browser and wake plone up

 [Arguments] ${ZOPE_LAYER_DOTTED_NAME}

 Start Zope Server ${ZOPE_LAYER_DOTTED_NAME}
 Zodb setup
 Set Selenium timeout 15s
 Set Selenium implicit wait 1s

 ${previous} Register keyword to run on failure Close Browser
 Wait until keyword succeeds 2min 3s Access plone
 Register keyword to run on failure ${previous}

 Wait until keyword succeeds 30s 1s Log in as site owner
 Log out
 Zodb teardown

Close browser and selenium server:

Close browser and selenium server
 Close browser
 Stop Zope Server

 © Copyright 2012, Plone Foundation.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

search.html

 Navigation

 		
 index

 		plone.act 1.0a1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Plone Foundation.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

_static/comment-close.png

plone-keywords/reference-browser-widget.html

 Navigation

 		
 index

 		plone.act 1.0a1 documentation »

Reference Browser Widget Keywords

Set Reference Browser Field Value:

Set reference browser field value

[arguments] ${fieldName} @{path}

Checkbox Select:

Select checkbox (check it)

[arguments] ${title}

 © Copyright 2012, Plone Foundation.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

_static/up-pressed.png

_static/up.png

_static/down.png

_static/plus.png

_static/comment.png

plone-keywords/index.html

 Navigation

 		
 index

 		plone.act 1.0a1 documentation »

Plone Keywords

plone.act provides high-level keywords to test Plone. Idealy it should provide
all the keywords that are necessary to write acceptance test in Plone.

		Plone Content Keywords

		Plone Browser Keywords

		Plone Login/Logout Keywords

		History Keywords

		Edit Wizard Keywords

		Reference Browser Widget Keywords

Using plone.app.testing variables

You can use existing plone.app.testing variables defined in plone/app/testing/interfaces.py [https://github.com/plone/plone.app.testing/blob/master/plone/app/testing/interfaces.py]. in your acceptance tests:

*** Settings ***

Library plone.act.PloneLibrary
Library Selenium2Library run_on_failure=Capture Page Screenshot
Variables plone/app/testing/interfaces.py

*** Test cases ***

Test variable file
 Should Be Equal ${PLONE_SITE_ID} plone
 Should Be Equal ${PLONE_SITE_TITLE} Plone site
 Should Be Equal ${DEFAULT_LANGUAGE} en

 Should Be Equal ${TEST_USER_NAME} test-user
 Should Be Equal ${TEST_USER_ID} test_user_1_
 Should Be Equal ${TEST_USER_PASSWORD} secret
 #Should Be Equal ${TEST_USER_ROLES} ['Member',]

 Should Be Equal ${SITE_OWNER_NAME} admin
 Should Be Equal ${SITE_OWNER_PASSWORD} secret

Misc

Goto homepage:

Goto homepage
 Go to ${PLONE_URL}
 Page should contain Powered by Plone & Python

..note:

I think we should deprecate that keyword because it is too close to the
existing "Go to" selenium2library keyword.

Click Overlay Link:

Click Overlay Link
 [Arguments] ${element}
 Click Link ${element}
 Wait Until Page Contains Element css=div.pb-ajax div#content-core

Should be above:

Should be above
 [Arguments] ${locator1} ${locator2}

 ${locator1-position} = Get vertical position ${locator1}
 ${locator2-position} = Get vertical position ${locator2}
 Should be true ${locator1-position} < ${locator2-position}

Remove Content:

Remove Content
 [arguments] ${id}

 Go to ${PLONE_URL}/${id}
 Page Should Contain Element css=body.section-${id}
 Click Delete Action
 Wait Until Page Contains Element css=input.destructive
 Click Button css=input.destructive
 Page Should Contain Plone site

Rename Content Title:

Rename Content Title
 [arguments] ${id} ${new_title}

 Go to ${PLONE_URL}/${id}
 Page Should Contain Element css=body.section-${id}
 Click Rename Action
 Wait Until Page Contains Element css=input#${id}_id
 Input Text css=input#${id}_title ${new_title}
 Click Button Rename All

 © Copyright 2012, Plone Foundation.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

_static/ajax-loader.gif

plone-keywords/login.html

 Navigation

 		
 index

 		plone.act 1.0a1 documentation »

Plone Login/Logout Keywords

Log in

Log in to the site as ${userid} using ${password}. There
is no guarantee of where in the site you are once this is
done. (You are responsible for knowing where you are and
where you want to be)

Go to ${PLONE_URL}/login_form
Page should contain element __ac_name
Page should contain element __ac_password
Page should contain button Log in
Input text __ac_name ${userid}
Input text __ac_password ${password}
Click Button Log in

Log in as test user

Log in ${TEST_USER_NAME} ${TEST_USER_PASSWORD}

Log in as site owner

Log in as the SITE_OWNER provided by plone.app.testing,
with all the rights and privileges of that user.

Log in ${SITE_OWNER_NAME} ${SITE_OWNER_PASSWORD}

Log in as test user with role

Log out

Go to ${PLONE_URL}/logout
Page should contain logged out

 © Copyright 2012, Plone Foundation.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

_static/file.png

plone-keywords/content.html

 Navigation

 		
 index

 		plone.act 1.0a1 documentation »

Plone Content Keywords

Robot Framework / Selenium2Library keywords to create/delete/change Plone
content.

		Use a test-folder (like in p.a.testing) for isolation and to avoid problems
for instance with name clashes in the global navigation.

		We currently have two different ways to create content:

		Create <portal_type> <title>: create content object in portal root / test
folder.

		Add <portal_type> <title>: add content object in current context / folder.

Maybe we can come up with a smart way to do both with one keyword with
optional parameters?

Create content

Create folder (Create a folder object within the test-folder):

Create folder
 [arguments] ${title}

 Goto homepage
 Open Add New Menu
 Click Link css=#plone-contentmenu-factories a#folder
 Element should be visible css=#archetypes-fieldname-title input
 Input Text title ${title}
 Click Button Save
 Page should contain ${title}
 Element should contain css=#parent-fieldname-title ${title}

Create page (Create a page object within the test-folder):

Create page
 [arguments] ${title}

 Create folder Folder for ${title}
 Open Add New Menu
 Click Link css=#plone-contentmenu-factories a#document
 Element should be visible css=#archetypes-fieldname-title input
 Input Text title ${title}
 Click Button Save
 Page should contain ${title}
 Element should contain css=#parent-fieldname-title ${title}

Add content

Add page (Add a page object in the current context/location):

Add page
 [arguments] ${title}

 Open Add New Menu
 Click Link link=Page
 Input Text title ${title}
 Click button name=form.button.save
 Page Should Contain Changes saved.

 © Copyright 2012, Plone Foundation.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

_static/down-pressed.png

