plone.act Documentation
Release 1.0a1

Plone Foundation

April 06, 2013

CONTENTS

Start here 3
1.1 Write arobot test foranew Ploneadd-on, 3
1.2 Write arobot test for an existing Ploneadd-on o o oL, 9
1.3 Learnmore 1obOt v v e 14
1.4 Debugg@ing robDOt teStS v v e e e e e e e e e e e e e e e e e e 15
Print these 17
Read more 19
Become master 21
4.1 Speed up your test writing with ACT-server 21

4.2 Speed up your BDD Given-clauses viaaremote library o0 oL 22

plone.act Documentation, Release 1.0a1

Warning: plone.act is deprecated.
Please, use http://pypi.python.org/pypi/plone.app.robotframework instead.

plone.act and its documentation gives you everything to get started in writing and executing functional Selenium tests
(including acceptance tests) for your Plone add-on.

plone.act performs functional testing by using two testing frameworks: Robot Framework and Selenium.

Robot Framework is a generic test automation framework for acceptance testing and acceptance test-driven develop-
ment (ATDD), even for behavior driven development (BDD). It has easy-to-use plain text test syntax and utilizes the
keyword-driven testing approach. Selenium is a web browser automation framework that exercises the browser as if
the user was interacting with the browser.

CONTENTS 1

http://pypi.python.org/pypi/plone.app.robotframework
http://code.google.com/p/robotframework/
http://seleniumhq.org/

plone.act Documentation, Release 1.0a1

2 CONTENTS

CHAPTER
ONE

START HERE

1.1 Write a robot test for a new Plone add-on

This is a minimal tutorial for getting started with writing functional Selenium tests for a new Plone add-on with Robot
Framework.

1.1.1 Install Templer

At first, we should have an add-on to test with. For creating a new add-on, we use Templer.

1.

Create a directory for a Templer-buildout and move there:

$ mkdir templer-buildout
$ cd templer-buildout

Create a file templer-buildout /buildout . cfg for Templer-installation with:

[buildout]
parts = templer

[templer]
recipe = zc.recipe.egg

eggs =
templer.core
templer.plone

Download a bootstrap for running the buildout:

$ curl -O http://python-distribute.org/bootstrap.py

Bootstrap and run the buildout:

$ python bootstrap.py —--distribute

$ bin/buildout

Installing templer.

Generated script ’/.../templer-buildout/bin/templer’.

Return back to the parent directory:

$ cd ..

http://templer-manual.readthedocs.org/en/latest/

plone.act Documentation, Release 1.0a1

1.1.2 Create a new product

Once we have Templer installed, we create a Plone add-on product by
templer-buildout/bin/templer plone_ basic and answering to the upcoming questions.
We must make sure to answer True for the question:

Robot Tests (Should the default robot test be included) [False]: True

Once we have answered for all the questions, our add-on template is ready:

$ templer-buildout/bin/templer plone_basic
plone_basic: A package for Plone add-ons

This template creates a package for a basic Plone add-on project with
a single namespace (like Products.PloneFormGen) .

To create a Plone project with a name like ’collective.geo.bundle’
(2 dots, a "nested namespace’), use the ’"plone_nested’ template.

If you are trying to create a Plone *sitex then the best place to
start is with one of the Plone installers. If you want to build
your own Plone buildout, use one of the plone’N’_buildout templates

This template expects a project name with 1 dot in it (a ’basic
namespace’, like ’foo.bar’).

Enter project name (or g to quit): my.product

If at any point, you need additional help for a question, you can enter
’?’ and press RETURN.

Expert Mode? (What question mode would you like? (easy/expert/all)?) [’'easy’]:
Version (Version number for project) ['1.077]:

Description (One-line description of the project) ['']:

Register Profile (Should this package register a GS Profile) [False]:

Robot Tests (Should the default robot test be included) [False]: True
Creating directory ./my.product

Replace 1019 bytes with 1378 bytes (2/43 lines changed; 8 lines added)

Replace 42 bytes with 119 bytes (1/1 lines changed; 4 lines added)

1.1.3 Bootstrap and run buildout

entering

Before we continue, now is a good time to run bootstrap and buildout to get the development environment ready:

$ python bootstrap.py -—-distribute
S bin/buildout

1.1.4 Run the default tests

Templer does create a couple of example tests for us — one of them being a robot test.

‘We can list the available tests with:

4 Chapter 1. Start here

plone.act Documentation, Release 1.0a1

$ bin/test —--list-tests

Listing my.product.testing.MyproductLayer:Functional tests:
Plone site (robot_test.txt) #start

Listing my.product.testing.MyproductLayer:Integration tests:
test_success (my.product.tests.test_example.TestExample)

And run the example robot test with:

S bin/test -t robot_
Running my.product.testing.MyproductLayer:Functional tests:
Set up plone.testing.zca.LayerCleanup in 0.000 seconds.
Set up plone.testing.z2.Startup in 0.237 seconds.
Set up plone.app.testing.layers.PloneFixture in 8.093 seconds.
Set up my.product.testing.MyproductLayer in 0.178 seconds.
Set up plone.testing.z2.ZServer in 0.503 seconds.
Set up my.product.testing.MyproductLayer:Functional in 0.000 seconds.
Running:

Ran 1 tests with 0 failures and 0 errors in 2.588 seconds.
Tearing down left over layers:
Tear down my.product.testing.MyproductLayer:Functional in 0.000 seconds.
Tear down plone.testing.z2.ZServer in 5.251 seconds.
Tear down my.product.testing.MyproductLayer in 0.004 seconds.
Tear down plone.app.testing.layers.PloneFixture in 0.087 seconds.
Tear down plone.testing.z2.Startup in 0.006 seconds.
Tear down plone.testing.zca.LayerCleanup in 0.005 seconds.

1.1.5 About functional test fixture

Functional Selenium tests require a fully functional Plone-environment.
Luckily, with plone.app.testing we can easily define a custom test fixture with Plone and our own add-on installed.

With Templer, both the base fixture and the functional test fixtures have already been defined in
my.product/src/my/product/testing.py. The latter with:

from plone.app.testing import FunctionalTesting

MY_PRODUCT_FUNCTIONAL_TESTING = FunctionalTesting(
bases= (MY_PRODUCT_FIXTURE, z2.ZSERVER_FIXTURE),
name="MyproductLayer:Functional"

1.1.6 Create a new robot test suite

Robot tests are written as text files, which are called test suites.

It’s good practice, with Plone, to prefix all robot test suite files with robot_. This makes it easier to both exclude the
robot tests (which are usually very time consuming) from test runs or run only the robot tests.

Write an another robot tests suite my . product/src/my/product/tests/robot_hello.txt:

*%x% Settings x*xx*

Library Selenium2Library timeout=10 implicit_wait=0.5

1.1. Write a robot test for a new Plone add-on 5

http://pypi.python.org/pypi/plone.app.testing/

plone.act Documentation, Release 1.0a1

Suite Setup Start browser
Suite Teardown Close All Browsers

**% Variables xxx

S{BROWSER} = Firefox

*xx Test Cases **xx

Hello World
[Tags] hello
Go to http://localhost:55001/plone/hello-world
Page should contain Hello World!

*%x Keywords *x*x*

Start browser
Open browser http://localhost:55001/plone/ Dbrowser=${BROWSER}

Note: Defining browser for Open browser keyword as a variable makes it easy to run the test later with different
browser.

1.1.7 Register the suite for zope.testrunner

To be able to run Robot Framework test suite with zope.testrunner and on top of our add-ons functional test fixture,
we need to

1. wrap the test suite into properly named Python unittest test suite
2. assign our functional test layer for all the test cases.
We do this all by simply adding our new robot test suite intomy . product /src/my/product /tests/test_robot.py

from my.product.testing import MY_PRODUCT_FUNCTIONAL_TESTING
from plone.testing import layered

import robotsuite

import unittest

def test_suite():
sulite = unittest.TestSuite ()
suite.addTests ([
layered (robotsuite.RobotTestSuite ("robot_test.txt"),
layer=MY_PRODUCT_FUNCTIONAL_TESTING),
layered (robotsuite.RobotTestSuite ("robot_hello_world.txt"),
layer=MY_PRODUCT_FUNCTIONAL_TESTING)
1)

return suite

Note that test_-prefix in the filename of test_robot . py is required for zope.testunner to find the test suite.

1.1.8 List and filter tests

Run bin/test (zope.testrunner) with ——11ist—-tests-argument to see that our test is registered correctly:

6 Chapter 1. Start here

http://pypi.python.org/pypi/zope.testrunner/

plone.act Documentation, Release 1.0a1

$ bin/test —--list-tests

Listing my.product.testing.MyproductLayer:Functional tests:
Plone site (robot_test.txt) #start
Hello_World (robot_hello_world.txt) #hello

Listing my.product.testing.MyproductlLayer:Integration tests:
test_success (my.product.tests.test_example.TestExample)

Experiment with —t-argument to filter testrunner to find only our robot test:

$ bin/test -t robot_ —--list-tests

Listing my.product.testing.MyproductLayer:Functional tests:
Plone site (robot_test.txt) #start
Hello_World (robot_hello_world.txt) #hello

or everything else:

$ bin/test -t \!robot_ —--list-tests
Listing my.product.testing.MyproductlLayer:Integration tests:
test_success (my.product.tests.test_example.TestExample)

We can also filter robot tests with tags:

$ bin/test -t \#hello --list-tests
Listing my.product.testing.MyproductLayer:Functional tests:
Hello_World (robot_hello_world.txt) #hello

1.1.9 Run (failing) test

After the test has been written and registered, it can be run normally with bin/test.

The run will fail, because the test describes an unimplemented feature:

$ bin/test -t \#hello

Running my.product.testing.MyproductLayer:Functional tests:

Set
Set
Set
Set
Set
Set

up
up
up
up
up
up

plone.testing.zca.LayerCleanup in 0.000 seconds.
plone.testing.z2.Startup in 0.217 seconds.
plone.app.testing.layers.PloneFixture in 7.643 seconds.
my.product.testing.MyproductLayer in 0.026 seconds.
plone.testing.z2.ZServer in 0.503 seconds.
my.product.testing.MyproductLayer:Functional in 0.000 seconds.

Running:
1/1

(100.0%)

Robot Hello World

Hello World | FAIL |
Page should have contained text 'Hello World!’ but did not

Robot Hello World | FAIL |
1 critical test, 0 passed, 1 failed

1 test total, 0 passed, 1 failed

Output:

Log:

Report:

/.../my.product/parts/test/robot_hello_world/Hello_World/output.xml
/.../my.product/parts/test/robot_hello_world/Hello_World/log.html
/.../my.product/parts/test/robot_hello_world/Hello_World/report.html

1.1. Write a robot test for a new Plone add-on

plone.act Documentation, Release 1.0a1

Failure in test Hello World (robot_hello_world.txt) #hello
Traceback (most recent call last):
File "/.../unittest2-0.5.1-py2.7.egg/unittest2/case.py", line 340, in run

testMethod ()
File "/.../eggs/robotsuite-1.0.2-py2.7.egg/robotsuite/__init__ .py", line 317,
assert last_status == ’'PASS’, last_message

AssertionError: Page should have contained text ’'Hello World!’ but did not

Ran 1 tests with 1 failures and 0 errors in 3.632 seconds.
Tearing down left over layers:
Tear down my.product.testing.MyproductLayer:Functional in 0.000 seconds.
Tear down plone.testing.z2.ZServer in 5.282 seconds.
Tear down my.product.testing.MyproductLayer in 0.003 seconds.
Tear down plone.app.testing.layers.PloneFixture in 0.084 seconds.
Tear down plone.testing.z2.Startup in 0.006 seconds.
Tear down plone.testing.zca.LayerCleanup in 0.004 seconds.

1.1.10 Create an example view

in runTest

Create view described in the test by registering a template intomy . product/src/my/product/configure.zcml:

<configure
xmlns="http://namespaces.zope.org/zope"
xmlns:five="http://namespaces.zope.org/five"
xmlns:browser="http://namespaces.zope.org/browser"
xmlns:118n="http://namespaces.zope.org/i18n"
xmlns:genericsetup="http://namespaces.zope.org/genericsetup"
118n_domain="my.product">

<five:registerPackage package="." initialize=".initialize" />

<browser:page
name="hello-world"
for="Products.CMFCore.interfaces.ISiteRoot"
template="hello_world.pt"
permission="zope2.View"

/>
<!-— —x- extra stuff goes here —x- -->
</configure>

And writing the template into my . product/src/my/product /hello_world.pt:

<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en"
xmlns:tal="http://xml.zope.org/namespaces/tal"
xmlns:metal="http://xml.zope.org/namespaces/metal"
xmlns:1i18n="http://xml.zope.org/namespaces/i118n"
lang="en"
metal :use-macro="context/main_template/macros/master"
il8n:domain="plone">

<body>

<metal:content-core fill-slot="content-core">
<metal:content-core define-macro="content-core">
<p>Hello World!</p>

8 Chapter 1. Start here

plone.act Documentation, Release 1.0a1

</metal:content—-core>
</metal:content-core>

</body>
</html>

1.1.11 Run (passing) test

Re-run the test to see it passing:

$ bin/test -t \#hello
Running my.product.testing.MyproductLayer:Functional tests:
Set up plone.testing.zca.LayerCleanup in 0.000 seconds.
Set up plone.testing.z2.Startup in 0.220 seconds.
Set up plone.app.testing.layers.PloneFixture in 7.810 seconds.
Set up my.product.testing.MyproductLayer in 0.027 seconds.
Set up plone.testing.z2.ZServer in 0.503 seconds.
Set up my.product.testing.MyproductLayer:Functional in 0.000 seconds.
Running:

Ran 1 tests with 0 failures and 0 errors in 2.604 seconds.
Tearing down left over layers:
Tear down my.product.testing.MyproductLayer:Functional in 0.000 seconds.
Tear down plone.testing.z2.ZServer in 5.253 seconds.
Tear down my.product.testing.MyproductLayer in 0.004 seconds.
Tear down plone.app.testing.layers.PloneFixture in 0.085 seconds.
Tear down plone.testing.z2.Startup in 0.006 seconds.
Tear down plone.testing.zca.LayerCleanup in 0.004 seconds.

1.1.12 Test reports

Robot Framework generates high quality test reports with screenshots of failing tests as:
my .product /parts/tests/robot_report.html Overview of the test results.

my .product /parts/tests/robot_log.html: Detailed log for every test with screenshots of failing tests.

1.2 Write a robot test for an existing Plone add-on

This is a tutorial for getting started with writing functional Selenium tests for an existing Plone add-on with Robot
Framework.

Let’s assumpt that we have an add-on my.product.

1.2.1 Update requirements

At first, we need to fix our product to require all the necessary dependencies for running Robot Framework tests.
To fix our dependencies, we update my . product /setup.py with:

extras_require={’test’: ['plone.app.testing[robot]l]},

1.2. Write a robot test for an existing Plone add-on 9

plone.act Documentation, Release 1.0a1

Note: When testing with Plone version less than 4.3, we must pin the version of plone.app.testing into
buildout.cfgqg.

Update my . product /buildout .cfg with:

[buildout]
extends =

versions.cfg

And create my .product /versions.cfg with:

[versions]
plone.app.versions = 4.2.2

1.2.2 Bootstrap and run buildout

Before we continue, now is a good time to run bootstrap and buildout to get the development environment ready:

$ python bootstrap.py -—-distribute
S bin/buildout

1.2.3 Define functional test fixture

Functional Selenium tests require a fully functional Plone-environment.
Luckily, with plone.app.testing we can easily define a custom test fixture with Plone and our own add-on installed.

After the base fixture has been created (by following plone.app.testing documentation) we only need to define a
functional testing fixture, which adds a fully functional ZServer to serve a Plone sandbox with our add-on.

Update my . product/src/my/product/testing.py with:

from plone.app.testing import FunctionalTesting

MY_PRODUCT_FUNCTIONAL_TESTING = FunctionalTesting(
bases= (MY_PRODUCT_FIXTURE, z2.ZSERVER_FIXTURE),
name="MyproductLayer:Functional"

1.2.4 Create a robot test suite

Robot tests are written as text files, which are called test suites.

It’s good practice, with Plone, to prefix all robot test suite files with robot_. This makes it easier to both exclude the
robot tests (which are usually very time consuming) from test runs or run only the robot tests.

Write a simple robot tests suite my . product/src/my/product/tests/robot_hello.txt:

*%% Settings *x*x*
Library Selenium2Library timeout=10 implicit_wait=0.5

Suite Setup Start browser

10 Chapter 1. Start here

http://pypi.python.org/pypi/plone.app.testing/
http://pypi.python.org/pypi/plone.app.testing/

plone.act Documentation, Release 1.0a1

Suite Teardown Close All Browsers

%% Variables xxx

${BROWSER} = Firefox

*x*x Test Cases *xx*

Hello World
[Tags] hello
Go to http://localhost:55001/plone/hello-world
Page should contain Hello World!

*%x Keywords *x*x*

Start browser
Open browser http://localhost:55001/plone/ browser=${BROWSER}

Note: Defining browser for Open browser keyword as a variable makes it easy to run the test later with different
browser.

1.2.5 Register the suite for zope.testrunner

To be able to run Robot Framework test suite with zope.testrunner and on top of our add-ons functional test fixture,
we need to

1. wrap the test suite into properly named Python unittest test suite
2. assign our functional test layer for all the test cases.
We do this all by simply writing my . product/src/my/product/tests/test_robot.py:

from my.product.testing import MY_PRODUCT_FUNCTIONAL_TESTING
from plone.testing import layered

import robotsuite

import unittest

def test_suite():
suite = unittest.TestSuite()
suite.addTests ([
layered (robotsuite.RobotTestSuite ("robot_hello_world.txt"),
layer=MY_PRODUCT_FUNCTIONAL_TESTING)
1)

return suite

Note that test_-prefix in the filename of test_robot . py is required for zope.testunner to find the test suite.

1.2.6 List and filter tests

Runbin/test (zope.testrunner) with ——11ist-test s-argument to see that our test is registered correctly:

$ bin/test —--list-tests
Listing my.product.testing.MyproductLayer:Functional tests:
Hello_World (robot_hello_world.txt) #hello

1.2. Write a robot test for an existing Plone add-on 11

http://pypi.python.org/pypi/zope.testrunner/

plone.act Documentation, Release 1.0a1

Listing my.product.testing.MyproductlLayer:Integration tests:

Experiment with —t-argument to filter testrunner to find only our robot test:

S bin/test -t robot_ —--list-tests

Listing my.product.testing.MyproductLayer:Functional tests:

Hello_World (robot_hello_world.txt) #hello

or everything else:

S bin/test -t \!'robot_ —--list-tests
Listing my.product.testing.MyproductlLayer:Integration tests:

We can also filter robot tests with tags:

$ bin/test -t \#hello --list-tests

Listing my.product.testing.MyproductLayer:Functional tests:

Hello_World (robot_hello_world.txt) #hello

1.2.7 Run (failing) test

After the test has been written and registered, it can be run normally with bin/test.

The run will fail, because the test describes an unimplemented feature:

$ bin/test -t robot_

Running my.product.testing.MyproductLayer:Functional tests:

Set
Set
Set
Set
Set
Set

up
up
up
up
up
up

plone.testing.zca.LayerCleanup in 0.000 seconds.

plone.testing.z2.Startup in 0.217 seconds.

plone.app.testing.layers.PloneFixture in 7.643 seconds.
my.product.testing.MyproductLayer in 0.026 seconds.

plone.testing.z2.ZServer in 0.503 seconds.

my.product.testing.MyproductLayer:Functional in 0.000 seconds.
Running:
1/1

(100.0%)

Robot Hello World

Hello World

Page should have contained text ’'Hello World!’

but did not

Robot Hello World
1 critical test, 0 passed, 1 failed
1 test total, 0 passed, 1 failed

Output:

Lo

g:

Report:

/.../my.product/parts/test/robot_hello_world/Hello_World/output.xml
/.../my.product/parts/test/robot_hello_world/Hello_World/log.html
/.../my.product/parts/test/robot_hello_world/Hello_World/report.html

Failure in test Hello World (robot_hello_world.txt)

Traceback

(most recent call last):

#hello

File "/.../unittest2-0.5.1-py2.7.egg/unittest2/case.py",
testMethod ()

line 340,

in run

12

Chapter 1. Start here

plone.act Documentation, Release 1.0a1

File "/.../eggs/robotsuite-1.0.2-py2.7.egg/robotsuite/__init__.py", line 317, in runTest
assert last_status == 'PASS’, last_message
AssertionError: Page should have contained text "Hello World!’ but did not

Ran 1 tests with 1 failures and 0 errors in 3.632 seconds.
Tearing down left over layers:

Tear
Tear
Tear
Tear
Tear
Tear

down
down
down
down
down
down

my.product.testing.MyproductLayer:Functional in 0.000 seconds.
plone.testing.z2.ZServer in 5.282 seconds.
my.product.testing.MyproductLayer in 0.003 seconds.
plone.app.testing.layers.PloneFixture in 0.084 seconds.
plone.testing.z2.Startup in 0.006 seconds.
plone.testing.zca.LayerCleanup in 0.004 seconds.

1.2.8 Create an example view

Create view described in the test by registering a template intomy . product/src/my/product/configure

<configure

xmlns="http://namespaces.zope.org/zope"
ns:five="http://namespaces.zope.org/five"
ns:browser="http://namespaces.zope.org/browser"
ns:1i18n="http://namespaces.zope.org/il8n"
ns:genericsetup="http://namespaces.zope.org/genericsetup"
118n_domain="my.product">

xml
xml
xml
xml

<browser:page
name="hello-world"
for="Products.CMFCore.interfaces.ISiteRoot"
template="hello_world.pt"
permission="zope2.View"

/

</configure>

>

And writing the template into my . product/src/my/product/hello_world.pt

<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en"
xmlns:tal="http://xml.zope.org/namespaces/tal"
xmlns:metal="http://xml.zope.org/namespaces/metal"
xmlns:1i18n="http://xml.zope.org/namespaces/1i18n"
lang="en"
metal :use-macro="context/main_template/macros/master"
il8n:domain="plone">

<body>

<metal:content-core fill-slot="content-core">
<metal:content-core define-macro="content-core">
<p>Hello World!</p>
</metal:content-core>
</metal:content-core>

</body>

.zcml:

1.2. Write a robot test for an existing Plone add-on

13

plone.act Documentation, Release 1.0a1

</html>

1.2.9 Run (passing) test

Re-run the test to see it passing:

S bin/test -t robot_
Running my.product.testing.MyproductLayer:Functional tests:
Set up plone.testing.zca.LayerCleanup in 0.000 seconds.
Set up plone.testing.z2.Startup in 0.220 seconds.
Set up plone.app.testing.layers.PloneFixture in 7.810 seconds.
Set up my.product.testing.MyproductLayer in 0.027 seconds.
Set up plone.testing.z2.ZServer in 0.503 seconds.
Set up my.product.testing.MyproductLayer:Functional in 0.000 seconds.
Running:

Ran 1 tests with 0 failures and 0 errors in 2.604 seconds.
Tearing down left over layers:
Tear down my.product.testing.MyproductLayer:Functional in 0.000 seconds.
Tear down plone.testing.z2.ZServer in 5.253 seconds.
Tear down my.product.testing.MyproductLayer in 0.004 seconds.
Tear down plone.app.testing.layers.PloneFixture in 0.085 seconds.
Tear down plone.testing.z2.Startup in 0.006 seconds.
Tear down plone.testing.zca.LayerCleanup in 0.004 seconds.

1.2.10 Test reports

Robot Framework generates high quality test reports with screenshots of failing tests as:
my .product /parts/tests/robot_report.html Overview of the test results.

my .product /parts/tests/robot_log.html: Detailed log for every test with screenshots of failing tests.

1.3 Learn more robot

Robot Framework is a generic and independent test automation framework with its own expandable test syntax, test
runner and test reporting tools. Yet, because of its extensibility it’s very pleasant to work with.

Robot is all about running test clauses called keywords. Every test may contain one more keywords, which are run in
serial — usually until first of them fails.

Keywords are defined in keywords libraries and as user keywords. Keyword libraries may be, for example, Python
libraries or XML-RPC-services. User keywords are just composite lists of existing keywords — also user keywords.

Because user keywords can also be composite of other user keywords, they make it possible to write tests in domain-
specific language.

1.3.1 Test suite

Robot tests are written in test suites, which are simply plain text files, usually ending with . txt.

Note: Advanced robot users may learn from the Robot Framework User Guide how to make hierarchical test suites.

14 Chapter 1. Start here

http://code.google.com/p/robotframework/wiki/UserGuideRobot

plone.act Documentation, Release 1.0a1

Here’s an example test suite:

**x%x Settings x*xx*

Library Selenium2Library timeout=10 implicit_wait=0.5
Resources keywords.txt

Suite Setup Start browser
Suite Teardown Close All Browsers

*%*x Variables *x*x

S{BROWSER} = firefox

*x*x Test Cases *xx*

Hello World
[Tags] hello
Go to http://localhost:55001/plone/hello-world
Page should contain Hello World!

xx Keywords xxx

Start browser
Open browser http://localhost:55001/plone/ browser=${BROWSER}

Each test suite may contain one to three different parts:

**xSettings*x*

Import available keyword libraries or resources (resources are plain text files like test suites, but without
test cases) and define possible setup and teardown keywords.

Variables Define available robot variables with their default values.
Test Cases Define runnable tests.

Keywords Define new user keywords.

1.3.2 BDD-style tests

Robot support Gherkin-style tests by removing exact words given, when, then and and from the beginning of
keyword to find a matching keyword.

For example, a clause:

Given I'm logged in as an admin

will match to a keyword:

I'm logged in as an admin

There’s a little bit more of BDD-style tests in Robot Framework User Guide.

1.4 Debugging robot tests

1. Slow done Selenium (WebDriver) to make the tests easier to follow:

1.4. Debugging robot tests 15

http://robotframework.googlecode.com/hg/doc/userguide/RobotFrameworkUserGuide.html?r=2.7.6#behavior-driven-stylep

plone.act Documentation, Release 1.0a1

Set Selenium Speed 0.5 seconds

. Pause Selenium (WebDriver) completely to inspect your step:

Set Selenium Timeout 600 seconds
Wait For Condition true

. Write a python keyword into your Python keyword library to drop the Zope server into debugger.

There’s one catch in debugging your code while running Robot Framework tests. Robot eats your standard input
and output, which prevents you to just import pdb; pdb.set_trace().

Instead, you have to add a few more lines to reclaim your I/O at first, and only then let your debugger in:

import sys

import pdb
for attr in (’stdin’, ’stdout’, ’stderr’):
setattr(sys, attr, getattr(sys, '__%s__ " % attr))

pdb.set_trace()

16

Chapter 1. Start here

CHAPTER
TWO

PRINT THESE

Robot Framework built-in library documentation http://robotframework.googlecode.com/hg/doc/libraries/BuiltIn.html?r=2.7.6

Robot Framework Selenium2Library documentation http://rtomac.github.com/robotframework-
selenium2library/doc/Selenium2Library.html

17

http://robotframework.googlecode.com/hg/doc/libraries/BuiltIn.html?r=2.7.6
http://rtomac.github.com/robotframework-selenium2library/doc/Selenium2Library.html
http://rtomac.github.com/robotframework-selenium2library/doc/Selenium2Library.html

plone.act Documentation, Release 1.0a1

18 Chapter 2. Print these

CHAPTER
THREE

READ MORE

How to write good Robot Framework test cases http://code.google.com/p/robotframework/wiki/HowToWriteGoodTestCases

19

http://code.google.com/p/robotframework/wiki/HowToWriteGoodTestCases

plone.act Documentation, Release 1.0a1

20 Chapter 3. Read more

CHAPTER
FOUR

BECOME MASTER

4.1 Speed up your test writing with ACT-server

plone.act comes with a special console script act_server, which starts up a Plone site with a given

plone.app.testing testing layer set up.

This will save time when writing new robot tests, because you can try out your unfinished test over and over again

without the usual time consuming setup/teardown of testing layers between every test.
Install act_server with support for the developed product with a buildout part:

[buildout]

parts += act_server
versions = versions

extensions = mr.developer

sources = sources
auto-checkout = plone.act
[sources]

plone.act = git git://github.com/plone/plone.act

[versions]
plone.app.testing = 4.2.2

[act_server]
recipe = zc.recipe.egg

eggs =
plone.act
my .product

After buildout, start act__server with:

$ bin/act_server my.product.testing.MY_PRODUCT_FUNCTIONAL_TESTING

And run tests with pybot and act_server test isolation support with:

$ bin/pybot —--listener plone.act.server.ZODB src/my/product/tests/robot_tests.txt

21

http://pypi.python.org/pypi/plone.app.testing/

plone.act Documentation, Release 1.0a1

4.2 Speed up your BDD Given-clauses via a remote library

BDD-style tests begin with one or more Given-clauses that should setup the test environment for the actual tests-
clauses (When and Then).

Because Given-clauses are not really part of the actual test, it is not necessary to run them through Selenium (using
Selenium2Library), but it would be faster to write custon Python keywords for them.

plone.act includes an example, how to a robot remote library, which could be called to interact with the site without
Selenium.

The base implementation is provided at:
https://github.com/plone/plone.act/blob/master/src/plone/act/remote.py

An example integration into testing layer is provided at:
https://github.com/plone/plone.act/blob/master/src/plone/act/testing. py#L43

An example test suite using the library is provided at:
https://github.com/plone/plone.act/blob/master/src/plone/act/tests/test_robot.py#L 13

https://github.com/plone/plone.act/blob/master/src/plone/act/tests/robot_remote.txt

22 Chapter 4. Become master

http://robotframework.googlecode.com/hg/doc/userguide/RobotFrameworkUserGuide.html?r=2.7.6#remote-library-interface
https://github.com/plone/plone.act/blob/master/src/plone/act/remote.py
https://github.com/plone/plone.act/blob/master/src/plone/act/testing.py#L43
https://github.com/plone/plone.act/blob/master/src/plone/act/tests/test_robot.py#L13
https://github.com/plone/plone.act/blob/master/src/plone/act/tests/robot_remote.txt

	Start here
	Write a robot test for a new Plone add-on
	Write a robot test for an existing Plone add-on
	Learn more robot
	Debugging robot tests

	Print these
	Read more
	Become master
	Speed up your test writing with ACT-server
	Speed up your BDD Given-clauses via a remote library

